A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst
نویسندگان
چکیده
This study reports on a facile and economical method for the scalable continuous synthesis of graphene sheets by the thermocatalytic decomposition of methane using a unique and novel unsupported catalyst of iron particles. Single-layered and few-layered graphene sheets were continuously synthesized by the isothermal decomposition reaction of methane over a catalyst of iron particles under atmospheric pressure without the need for a cooling precipitation process. In contrast with the methods currently reported in the published literature, this method exhibits remarkably high capacity and efficiency in terms of graphene throughput and yield, respectively. A maximum graphene yield rate of 20 mg/min per g of catalyst and a graphene output of 6 g per g of catalyst were achieved in this study; this graphene output has far surpassed the best graphene yield of 50 mg per 500 mg of catalyst, thus reported so far, by 60 times.
منابع مشابه
Large Amplitude Vibration Analysis of Graphene Sheets as Resonant Mass Sensors Using Mixed Pseudo-Spectral and Integral Quadrature Methods
The present paper investigates the potential application of graphene sheets with attached nanoparticles as resonant sensors by introducing a nonlocal shear deformation plate model. To take into account an elastic connection between the nanoplate and the attached nanoparticle, the nanoparticle is considered as a mass-spring system. Then, a combination of pseudo-spectral and integral quadrature m...
متن کاملFe3O4@SiO2 nanoparticles: An efficient, green and magnetically reusable catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives
An efficient and eco-friendly method for the one-pot synthesis of 14-aryl-14H-dibenzo [a,i]xanthene-8,13-dione derivatives has been developed in the presence of Fe3O4@SiO2 core-shell nanoparticles. The multi-component reactions of 2-hydroxy-1,4-naphthoquinone, β-naphthol and aldehydes were efficiently catalyzed using novel nano-scale materials under reflux conditions. The present method offers ...
متن کاملFe3O4@SiO2 nanoparticles: An efficient, green and magnetically reusable catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives
An efficient and eco-friendly method for the one-pot synthesis of 14-aryl-14H-dibenzo [a,i]xanthene-8,13-dione derivatives has been developed in the presence of Fe3O4@SiO2 core-shell nanoparticles. The multi-component reactions of 2-hydroxy-1,4-naphthoquinone, β-naphthol and aldehydes were efficiently catalyzed using novel nano-scale materials under reflux conditions. The present method offers ...
متن کاملFacile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction
In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...
متن کاملA Facile and Green Synthesis Route for the Production of Silver Nanoparticles in Large Scale
In the present work, a fast, green and simple synthesis method for the production of silver nanoparticles (AgNPs) is introduced. Silver nanoparticles are currently among the most widely used man-made nano materials, present in a wide range of consumer products. Green chemistry is characterized by careful planning of chemical synthesis of silver nanoparticles to reduce adverse outcomes. S...
متن کامل